
ChaCha, a variant of Salsa20

Daniel J. Bernstein ?

Department of Mathematics, Statistics, and Computer Science (M/C 249)
The University of Illinois at Chicago

Chicago, IL 60607–7045
snuffle6@box.cr.yp.to

Abstract. ChaCha8 is a 256-bit stream cipher based on the 8-round
cipher Salsa20/8. The changes from Salsa20/8 to ChaCha8 are designed
to improve diffusion per round, conjecturally increasing resistance to
cryptanalysis, while preserving—and often improving—time per round.
ChaCha12 and ChaCha20 are analogous modifications of the 12-round
and 20-round ciphers Salsa20/12 and Salsa20/20. This paper presents
the ChaCha family and explains the differences between Salsa20 and
ChaCha.

1 Introduction

1.1 Background

The Salsa20/20 stream cipher expands a 256-bit key into 264 randomly accessible
streams, each containing 264 randomly accessible 64-byte blocks. Salsa20/20 is a
more conservative design than AES, and the community seems to have rapidly
gained confidence in the security of the cipher. See [2, Section 5] for a summary
of third-party cryptanalysis.

Salsa20/20 is consistently faster than AES. I recommend Salsa20/20 for en-
cryption in typical cryptographic applications. The Salsa20 family also includes
reduced-round ciphers—the 12-round cipher Salsa20/12 and the 8-round cipher
Salsa20/8—aimed at users who value speed more highly than confidence. See [2,
Table 1.1] for a summary of the speeds of Salsa20/8, Salsa20/12, and Salsa20/20.

1.2 Contributions

This paper introduces the ChaCha family of stream ciphers, a variant of the
Salsa20 family. ChaCha follows the same basic design principles as Salsa20, but I
changed some of the details, most importantly to increase the amount of diffusion
per round. I speculate that the minimum number of secure rounds for ChaCha is
smaller (and not larger!) than the minimum number of secure rounds for Salsa20.

? Permanent ID of this document: 4027b5256e17b9796842e6d0f68b0b5e. Date of this
document: 2008.01.20. This work was supported by the National Science Foundation
under grant ITR–0716498.

Computer Cycles/byte
8 rounds 12 rounds 20 rounds

Arch MHz CPU model Salsa20 ChaCha Salsa20 ChaCha Salsa20 ChaCha

ppc32 533 PowerPC G4 7410 1.99 1.86 2.74 2.61 4.24 4.13
amd64 2137 Core 2 Duo 6f6 1.87 1.87 2.53 2.54 3.90 3.95
ppc64 2000 PowerPC G5 970 3.24 3.06 4.74 4.57 7.81 7.58
amd64 2000 Athlon 64 X2 15,75,2 3.47 3.29 4.86 4.61 7.64 7.23
amd64 3000 Pentium D f64 5.39 3.87 7.16 5.27 10.65 8.23
x86 1300 Pentium M 695 5.30 4.88 7.44 7.06 11.70 11.08
x86 900 Athlon 622 4.62 5.36 6.44 7.58 10.04 12.21
sparc 1050 UltraSPARC IV 6.65 6.60 9.17 9.17 14.34 14.29
x86 3200 Pentium D f47 7.13 6.75 9.77 9.33 14.33 14.27
x86 1900 Pentium 4 f12 5.41 7.08 8.21 9.72 11.74 15.03

Table 1.3. Salsa20 and ChaCha software speeds for long streams. Sorted by ChaCha8
column.

This extra diffusion does not come at the expense of extra operations. A
ChaCha round has 16 additions and 16 xors and 16 constant-distance rotations of
32-bit words, just like a Salsa20 round. Furthermore, ChaCha has the same levels
of parallelism and vectorizability as Salsa20, and saves one of the 17 registers
used by a “natural” Salsa20 implementation. So it is reasonable to guess that
a ChaCha round can achieve the same software speed as a Salsa20 round—
and even better speed than a Salsa20 round on some platforms. Consequently,
if ChaCha has the same minimum number of secure rounds as Salsa20, then
ChaCha will provide better overall speed than Salsa20 for the same level of
security.

Of course, performance should be measured, not guessed! I wrote and posted
new public-domain software for ChaCha, and timed that software, along with
the fastest available Salsa20 software, on several computers, using the latest
version (20080120) of the eSTREAM benchmarking framework. Table 1.3 shows
the results. Compared to the Salsa20/8 software, the ChaCha8 software is

• the same speed on a 64-bit amd64-architecture Core 2 (6f6),
• the same speed on a 64-bit sparc-architecture UltraSPARC IV,
• 5% faster on a 64-bit amd64-architecture Athlon 64 (15,75,2),
• 5% faster on a 32-bit x86-architecture Pentium D (f47),
• 5% faster on a 64-bit ppc64-architecture PowerPC G5 (750),
• 6% faster on a 32-bit ppc32-architecture PowerPC G4 (7410),
• 8% faster on a 32-bit x86-architecture Pentium M (695), and
• 28% faster on a 64-bit amd64-architecture Pentium D (f64).

It is 16% slower on a 32-bit x86-architecture Athlon (622) and 31% slower on a
32-bit x86-architecture Pentium 4 (f12), but I expect these numbers to change
with further tuning.

This paper assumes that the reader is familiar with Salsa20, and focuses on
the changes from Salsa20 to ChaCha. Specifically, Section 2 compares Salsa20

quarter-rounds to ChaCha quarter-rounds, and Section 3 compares the Salsa20
matrix to the ChaCha matrix.

2 The quarter-round

2.1 Review of the Salsa20 quarter-round

Salsa20 invertibly updates 4 32-bit state words a, b, c, d as follows:

b ^= (a+d) <<< 7;
c ^= (b+a) <<< 9;
d ^= (c+b) <<< 13;
a ^= (d+c) <<< 18;

This code is expressed in a common extension of the C programming language:
^ means xor, + means addition modulo 232, and <<<b means b-bit rotation of a
32-bit integer towards high bits.

Salsa20 actually has 16 state words, but it operates on only 4 words at a
time. The communication cost of accessing 16 state words is troublesome on
many platforms; Salsa20 reduces the access frequency by performing several
operations on 4 words before continuing on to the next 4 words.

2.2 The ChaCha quarter-round

ChaCha, like Salsa20, uses 4 additions and 4 xors and 4 rotations to invert-
ibly update 4 32-bit state words. However, ChaCha applies the operations in
a different order, and in particular updates each word twice rather than once.
Specifically, ChaCha updates a, b, c, d as follows:

a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

Obviously the ChaCha quarter-round, unlike the Salsa20 quarter-round, gives
each input word a chance to affect each output word. Less obvious is that
the ChaCha quarter-round diffuses changes through bits more quickly than the
Salsa20 quarter-round. One can see this by tracing every possible 1-bit input
difference: in the absence of carries, the ChaCha quarter-round changes (on av-
erage) 12.5 output bits, while the Salsa20 quarter-round changes 8 output bits.

This double-speed update is the most important difference between ChaCha
and Salsa20. After I announced this idea, Aumasson, Fischer, Khazaei, Meier,
and Rechberger in [1] considered a “ChaCha” cipher obtained by applying this
idea to Salsa20, and concluded that their state-of-the-art attack broke one fewer
round of “ChaCha” than of Salsa20. I speculate that ChaCha has similar re-
sistance to “ChaCha” against the attack, but of course this has to be checked
carefully.

The above code also shows a much less important difference between ChaCha
and Salsa20: I changed the rotation distances 7, 9, 13, 18 to 16, 12, 8, 7. The dif-
ference in security appears to be negligible: 7, 9, 13, 18 appears marginally better
in some diffusion measures, and 16, 12, 8, 7 appears marginally better in others,
but the margins are tiny, far smaller than the presumed inaccuracy of the dif-
fusion measures as predictors of security. The change boosts speed slightly on
some platforms while making no difference on other platforms.

3 The matrix

3.1 Review of the Salsa20 matrix

Salsa20 puts its 4 attacker-controlled input words (nonce and block counter), 8
key words, and 4 constant words into a 4× 4 matrix:

constant key key key
key constant input input

input input constant key
key key key constant

Salsa20/r invertibly transforms the matrix through r rounds. It then adds the
result to the original matrix to obtain a 16-word (64-byte) output block.

Several Salsa20 software implementations (my XMM implementation for the
Pentium 4, for example, and Matthijs van Duin’s AltiVec implementation for
the PowerPC G4) internally permute the matrix, shifting the second column up
one row, shifting the third column up two rows, and shifting the fourth column
up three rows. The permuted initial matrix is as follows:

constant constant constant constant
key input key key

input key key input
key key input key

From this permuted perspective, the first round of Salsa20 applies a quarter-
round to each column in parallel, modifying the second row, then the third row,
then the fourth row, then the first row. If rows of the matrix are stored in vectors
then these 4 quarter-rounds consist entirely of SIMD operations on the vectors.

The second round of Salsa20 applies a quarter-round to each northeast diag-
onal in parallel, modifying the fourth row, then the third row, then the second
row, then the first row. Appropriate rotations of the entries in each row turn the
diagonals into columns, again allowing SIMD operations at very low cost.

The third round is like the first; the fourth round is like the second; and so
on. The matrix permutation needs to be undone before a block is output.

3.2 The ChaCha matrix

ChaChar, like Salsa20/r, builds a 4×4 matrix, invertibly transforms the matrix
through r rounds, and adds the result to the original matrix to obtain a 16-word
(64-byte) output block.

There are three differences in the details. First, ChaCha permutes the order
of words in the output block to match the permutation described above. This
has no effect on security; it saves time on SIMD platforms; it makes no difference
in speed on other platforms.

Second, ChaCha builds the initial matrix with all attacker-controlled input
words at the bottom:

constant constant constant constant
key key key key
key key key key

input input input input

The key words are simply copied in order; the input words are the block counter
followed by the nonce; the constants are the same as in Salsa20. The first round of
ChaCha adds keys into constants, then xors the results into inputs, then rotates,
then adds the results into keys, etc. (Tangential note: Modifying constants first
is helpful for compression functions built on the same core.)

I chose the positions of inputs in Salsa20 so that I could easily see which
words were affected by small changes to the inputs. I think that a word-level
trail-width analysis would take much more work for ChaCha than for Salsa20, in
part because of cancellations in the modified quarter-round and in part because
of the modified input positions. On the other hand, I think that the spread of
positions in Salsa20 gave unnecessary flexibility to attackers, and I don’t see any
evidence that it actually improves security. A word-level trail-width analysis is
much less interesting than the type of bit-level analysis carried out in, e.g., [1].

Third, ChaCha sweeps through rows in the same order in every round. The
first round modifies first, fourth, third, second, first, fourth, third, second along
columns, and the second round modifies first, fourth, third, second, first, fourth,
third, second along southeast diagonals:

QUARTERROUND(x0, x4, x8,x12)
QUARTERROUND(x1, x5, x9,x13)
QUARTERROUND(x2, x6,x10,x14)
QUARTERROUND(x3, x7,x11,x15)
QUARTERROUND(x0, x5,x10,x15)
QUARTERROUND(x1, x6,x11,x12)
QUARTERROUND(x2, x7, x8,x13)
QUARTERROUND(x3, x4, x9,x14)

The four quarter-round words are always in top-to-bottom order in the matrix.
I speculate that this improves diffusion slightly.

References

1. Jean-Philippe Aumasson, Simon Fischer, Shahram Khazaei, Willi Meier, Chris-
tian Rechberger, New features of Latin dances: analysis of Salsa, ChaCha, and
Rumba (2007). URL: http://eprint.iacr.org/2007/472. Citations in this docu-
ment: §2.2, §3.2.

2. Daniel J. Bernstein, The Salsa20 family of stream ciphers (2007). URL: http://
cr.yp.to/papers.html#salsafamily. Citations in this document: §1.1, §1.1.

