
TWO GRUMPY GIANTS AND A BABY

DANIEL J. BERNSTEIN AND TANJA LANGE

Abstract. Pollard’s rho algorithm, along with parallelized, vectorized, and

negating variants, is the standard method to compute discrete logarithms in

generic prime-order groups. This paper presents two reasons that Pollard’s rho
algorithm is farther from optimality than generally believed. First, “higher-

degree local anti-collisions” make the rho walk less random than the predictions

made by the conventional Brent–Pollard heuristic. Second, even a truly ran-
dom walk is suboptimal, because it suffers from “global anti-collisions” that

can at least partially be avoided. For example, after (1.5 + o(1))
√
` additions

in a group of order ` (without fast negation), the baby-step-giant-step method

has probability 0.5625 + o(1) of finding a uniform random discrete logarithm;

a truly random walk would have probability 0.6753 . . .+ o(1); and this paper’s
new two-grumpy-giants-and-a-baby method has probability 0.71875 + o(1).

1. Introduction

Fix a prime `. The discrete-logarithm problem for a group G of order ` is the
problem of finding logg h, given a generator g of G and an element h of G. The
notation logg h means the unique s ∈ Z/` such that h = gs, where G is written
multiplicatively.

The difficulty of finding discrete logarithms depends on G. For example, if G is
the additive group Z/` (encoded as bit strings representing {0, 1, . . . , `− 1} in the
usual way), then logg h is simply h/g, which can be computed in polynomial time
using the extended Euclidean algorithm. As a more difficult example, consider the
case that p = 2` + 1 is prime and G is the order-` subgroup of the multiplicative
group F∗p (again encoded in the usual way); index-calculus attacks then run in time
subexponential in p and thus in `. However, if G is the order-` subgroup of F∗p
where p − 1 is a much larger multiple of `, then index-calculus attacks become
much slower in terms of `; the standard algorithms are then the baby-step-giant-
step method, using at most (2 + o(1))

√
` multiplications in G, and the rho method,

which if tweaked carefully uses on average (
√
π/2 + o(1))

√
` multiplications in G.

This paper focuses on generic discrete-logarithm algorithms such as the baby-
step-giant-step method and the rho method. “Generic” means that these algorithms
work for any order-` group G, using oracles to compute 1 ∈ G and to compute
a, b 7→ ab for any a, b ∈ G. See Section 2 for a precise definition.

If G is an elliptic-curve group chosen according to standard criteria then the
best discrete-logarithm algorithms available are variants of the baby-step-giant-step
method and the rho method, taking advantage of the negligible cost of computing

Date: 2012.07.09. Permanent ID of this document: 3f5730b1d17389fa4442a4ee5480f668.
2010 Mathematics Subject Classification. Primary 11Y16.
This work was supported by the National Science Foundation under grants 0716498 and

1018836 and by the European Commission under Contract ICT-2007-216676 ECRYPT II. No
babies (or giants) were harmed in the preparation of this paper.

1



2 DANIEL J. BERNSTEIN AND TANJA LANGE

inverses in G. There is a standard “inverting” (or “negating”) variant of the concept
of a generic algorithm, also discussed in Section 2. This paper emphasizes the non-
inverting case, but all of the ideas can be adapted to the inverting case.

Measuring algorithm cost. The most fundamental metric for generic discrete-
logarithm algorithms, and the metric used throughout this paper, is the probability
of discovering a uniform random discrete logarithm within m multiplications. By
appropriate integration over m one obtains the average number of multiplications
to find a discrete logarithm, the variance, etc. We caution the reader that com-
paring probabilities of two algorithms for one m can produce different results from
comparing averages, maxima, etc.; for example, the rho method is faster than baby-
step-giant-step on average but much slower in the worst case.

One can interpret a uniform random discrete logarithm as logg h for a uniform
random pair (g, h), or as logg h for a fixed g and a uniform random h. The follow-
ing trivial “worst-case-to-average-case reduction” shows that a worst-case discrete
logarithm is at most negligibly harder than a uniform random discrete logarithm:
one computes logg h as logg h

′ − r where h′ = hgr for a uniform random r ∈ Z/`.
There are many reasons that simply counting multiplications, the number m

above, does not adequately capture the cost of these algorithms:

• A multiplication count ignores overhead, i.e., costs of computations other
than multiplications. For example, the ongoing ECC2K-130 computation
uses a very restricted set of Frobenius powers, sacrificing approximately 2%
in the number of multiplications, because this reduces the overhead enough
to speed up the entire computation.
• A multiplication count ignores issues of memory usage. For some algo-

rithms, such as the baby-step-giant-step method, the memory usage grows
with

√
`, while others, such as the rho method, use constant (or near-

constant) memory.
• A multiplication count is blind to optimizations of the multiplication oper-

ation. The question here is not simply how fast multiplication can be, but
how multiplication algorithms interact with higher-level choices in these al-
gorithms. For example, Cheon, Hong, and Kim in [10] showed how to look
ahead one step in the rho method for F∗p and combine two multiplications
into one with very little overhead, although memory usage increases.
• A multiplication count ignores issues of parallelization. Pollard’s original

rho method is difficult to parallelize effectively, but “distinguished point”
variants of the rho method are heavily parallelizable with small overhead.
• A multiplication count ignores issues of vectorization. Modern processors

can operate on a vector of words in one clock cycle but this requires that
the operation is the same across the entire vector. This issue was raised in
a recent discussion of whether the negation map on an elliptic curve can
actually be used to speed up the rho method, rather than merely to save
multiplications; see [6] and [3] for the two sides of the argument.

An improvement in multiplication counts does not necessarily indicate an improve-
ment in more sophisticated cost metrics. It is nevertheless reasonable to begin with
an analysis of multiplication counts, as is done in a large fraction of the literature;
followup analyses can then ask whether improved multiplication counts are still
achievable by algorithms optimized for other cost metrics.



TWO GRUMPY GIANTS AND A BABY 3

Contents of this paper. Brent and Pollard in [7] identified a source of non-
randomness in the rho method, and quantified the loss of success probability pro-
duced by this nonrandomness, under plausible heuristic assumptions. The Brent–
Pollard nonrandomness (with various simplifications and in various special cases)
has been stated by many authors as the main deficiency in the rho method, and
the rho method has been the workhorse of large-scale discrete-logarithm computa-
tions. There appears to be a widespread belief that, except for the Brent–Pollard
nonrandomness, the rho method is the best conceivable generic discrete-logarithm
algorithm. Of course, the rho method can take more than 2

√
` multiplications in

the worst case while the baby-step-giant-step method is guaranteed to finish within
2
√
` multiplications, but the rho method is believed to be the best way to spend a

smaller number of multiplications.
This paper shows that there are actually at least two more steps separating the

rho method from optimality. First, the rho method is actually less random and
less successful than the Brent–Pollard prediction, because the rho method suffers
from a tower of what we call “local anti-collisions”; Brent and Pollard account only
for “degree-1 local anti-collisions”. Second, and more importantly, the rho method
would not be optimal even if it were perfectly random, because it continues to suffer
from what we call “global anti-collisions”. We introduce a new “two grumpy giants
and a baby” algorithm that avoids many of these global anti-collisions.

This new algorithm, like the original baby-step-giant-step algorithm, has low
overhead but high memory. We have not found a low-memory variant. This means
that, for the moment, the algorithm is useful only for discrete-logarithm problems
small enough to fit into fast memory. The algorithm nevertheless challenges the
idea that the rho method is optimal for larger problems. The same approach might
also be useful for “implicit” discrete-logarithm problems in which rho-type iteration
is inapplicable, such as stage 2 of the p−1 factorization method, but those problems
involve many overheads not considered in this paper.

Section 2 describes the general concept of anti-collisions. Section 3 reviews the
Brent–Pollard nonrandomness. Section 4 discusses higher-degree anti-collisions in
the rho method. Section 5 reports computations of optimal discrete-logarithm
algorithms for small `. Section 6 presents our new algorithm.

We thank the anonymous referees for several useful comments and questions.

2. Anti-collisions

This section introduces the concept of anti-collisions in generic discrete-logarithm
algorithms. This section begins by reviewing the standard way to define such algo-
rithms; readers familiar with the definition should still skim it to see our notation.

Generic discrete-logarithm algorithms. The standard way to formalize the
idea that a generic algorithm works for any order-` group G is to give the algorithm
access to an oracle that computes 1 ∈ G and an oracle that computes the function
a, b 7→ ab from G × G to G. The elements of G are encoded as a size-` set G of
strings.

An m-multiplication generic algorithm is one that calls the a, b 7→ ab oracle m
times. The algorithm obtains 1 for free, and has g and h as inputs, so overall it
sees m+ 3 group elements. We write w0 = 1, w1 = g, w2 = h, and wi for i ≥ 3 as
the (i − 2)nd output of the a, b 7→ ab oracle: in other words, wi = wjwk for some
j, k ∈ {0, 1, . . . , i− 1} computed by the algorithm as functions of w0, w1, . . . , wi−1.



4 DANIEL J. BERNSTEIN AND TANJA LANGE

These functions can also flip coins (i.e., take as an additional input a sequence
b0, b1, . . . of uniform random bits that are independent of each other, of g, of h,
etc.), but cannot make oracle calls.

The standard way to formalize the idea that a generic algorithm does not take
advantage of the structure of G is to hide this structure by randomizing it. For
example, one can take G as the additive group Z/`, and take G as the usual binary
representation of {0, 1, . . . , `− 1}, but choose a uniform random injection from G
to G rather than the usual encoding. One defines the generic success probability
of a generic algorithm by averaging not only over logg h but also over the choices
of this injection.

To allow inverting algorithms one also allows free access to an oracle that com-
putes a 7→ 1/a. Equivalently, one allows the algorithm to compute wi as either
wjwk or wj/wk, and one also provides 1/wi. Of course, one can simulate this
inversion oracle using approximately lg ` calls to the multiplication oracle, since
1/a = a`−1; an algorithm that uses only a small number of inversions can thus be
simulated at negligible cost without inversions.

Slopes. Each wi can be written as hxigyi for a pair (xi, yi) ∈ (Z/`)2 trivially
computable by the algorithm. Specifically, w0 = 1 = hx0gy0 where (x0, y0) = (0, 0);
w1 = g = hx1gy1 where (x1, y1) = (0, 1); w2 = h = hx2gy2 where (x2, y2) = (1, 0); if
wi is computed as wjwk then wi = hxigyi where (xi, yi) = (xj , yj) + (xk, yk); and
if an inverting algorithm computes wi as wj/wk then wi = hxigyi where (xi, yi) =
(xj , yj)− (xk, yk).

Normally these algorithms find logg h by finding collisions in the map (x, y) 7→
hxgy from (Z/`)2 to G. A collision hxigyi = hxjgyj with (xi, yi) 6= (xj , yj) must
have xi 6= xj (otherwise gyi = gyj so yi = yj since g generates G), so the negative
of the slope (yj − yi)/(xj − xi) is exactly logg h. The discrete logarithms found
by w0, w1, . . . , wm+2 are thus exactly the negatives of the (m+ 3)(m+ 2)/2 slopes
(excluding any infinite slopes) between the m+ 3 points (x0, y0), . . . , (xm+2, ym+2)
in (Z/`)2. The number of discrete logarithms found in this way is the number d of
distinct non-infinite slopes. The generic chance of encountering such a collision is
exactly d/`.

In the remaining cases, occurring with probability 1 − d/`, these algorithms
simply guess logg h. The success chance of this guess is 0 if the guess matches one
of the negated slopes discussed above; otherwise the conditional success chance of
this guess is 1/(`−d), so the success chance of this guess is 1/`. The overall generic
success chance of the algorithm is thus between d/` and (d + 1)/`, depending on
the strategy for this final guess. In the extreme case d = ` this guess does not exist
and the generic success chance is 1.

(Similar comments apply to inverting algorithms, but the bound on d is dou-
bled, because there are twice as many opportunities to find − logg h. Specifically,
comparing wj to wi finds the slope (yj − yi)/(xj −xi), while comparing wj to 1/wi

finds (yj + yi)/(xj + xi).)
This model for generic discrete-logarithm algorithms was introduced by Shoup

in [24], along with the bound O(m2/`) on the generic success probability of m-
multiplication algorithms. Nechaev in [15] three years earlier had proven the
collision-probability bound O(m2/`) in a weaker model, where algorithms are per-
mitted only to remotely manipulate group elements without inspecting strings rep-
resenting the group elements. Nechaev’s model is equivalent to Shoup’s model when



TWO GRUMPY GIANTS AND A BABY 5

one measures algorithm cost as the number of multiplications, but is more restric-
tive than Shoup’s model in more sophisticated cost metrics; for example, Nechaev’s
model is unable to express the rho algorithm.

Chateauneuf, Ling, and Stinson in [9] introduced the idea of counting distinct
slopes. They pointed out that the success probability of the baby-step-giant-step
method is a factor 2 + o(1) away from the obvious quantification of the Nechaev–
Shoup bound: m multiplications allow only m/2 baby steps and m/2 giant steps,
producing m2/4 slopes (all distinct if m2/4 ≤ `), while one can imagine m + 3
points in (Z/`)2 potentially having as many as (m+ 3)(m+ 2)/2 > m2/2 distinct
slopes.

Computer searches reported in [9, Section 3] found for each ` < 100 a set of

only marginally more than
√

2` points with slopes covering Z/`. However, these
sets of points do not form addition chains, and as far as we can tell the shortest
addition chains for all of the constructions in [9] are worse than the baby-step-
giant-step method in the number of multiplications used. The cost model used in
[9] allows a, b 7→ asbt as a single oracle call for any (s, t); we view that cost model
as excessively simplified, and are skeptical that algorithms optimized for that cost
model will be of any use in practice.

Anti-collisions. We use the word “anti-collision” to refer to an appearance of a
useless slope — a slope that cannot create a new collision because the same slope
has appeared before. Formally, an anti-collision is a pair (i, j) with i > j such that
either

• xi = xj or
• (yj − yi)/(xj − xi) equals (yj′ − yi′)/(xj′ − xi′) for some pair (i′, j′) lexico-

graphically smaller than (i, j) with i′ > j′.

The number of anti-collisions is exactly the gap (m + 3)(m + 2)/2 − d, where as
above d is the number of distinct non-infinite slopes. Our objective in this paper is
to understand why anti-collisions occur in addition chains in (Z/`)2, and how these
anti-collisions can be avoided.

In Section 3 we review a standard heuristic by Brent and Pollard that can be
viewed as identifying some anti-collisions in the rho method, making the rho method
somewhat less effective than a truly random walk would be. In Section 4 we identify
a larger set of anti-collisions in the rho method, making the rho method even less
effective than predicted by Brent and Pollard. This difference is most noticeable
for rho walks that use a very small number of steps, such as hardware-optimized
walks or typical walks on equivalence classes modulo Frobenius on Koblitz curves.

It should be obvious that even a truly random walk produces a large number
of anti-collisions when m grows to the scale of

√
`. In Section 6 we show that at

least a constant fraction of these anti-collisions can be eliminated: we construct an
explicit and efficient addition chain with significantly fewer anti-collisions, and thus
significantly higher success probability, than a truly random walk.

3. Review of the Brent–Pollard nonrandomness

This section reviews the nonrandomness that Brent and Pollard pointed out in
the rho method. The literature contains three formulas for this nonrandomness, in
three different levels of generality, backed by two different heuristic arguments. As



6 DANIEL J. BERNSTEIN AND TANJA LANGE

discussed in Section 4, these heuristics account for “degree-1 local anti-collisions”
but do not account for “higher-degree local anti-collisions”.

The rho method. The rho method precomputes r distinct “steps” s1, s2, . . . , sr ∈
G− {1} (as some initial w’s), and then moves from wi to wi+1 = wisj , where j is
a function of wi. Write pj for the probability that step sj is used.

We suppress standard details of efficient parallelization and collision detection
here, since our emphasis is on the success probability achieved after m multipli-
cations. Inserting each new group element into an appropriate data structure will
immediately recognize the first collision without consuming any multiplications.

The
√
V formula. Brent and Pollard in [7, Section 2] introduced the following

heuristic argument, concluding that if the values w0, . . . , wm are distinct then wm+1

collides with one of those values with probability approximately mV/`, where V is
defined below. This implies that the total chance of a collision within m multiplica-

tions (i.e., within w0, . . . , wm+2) is approximately 1− (1− V/`)m2/2, which in turn
implies that the average number of multiplications for a collision is approximately√
π/2
√
`/
√
V . For comparison, a truly random walk would have V = 1.

This argument applies to a more general form of the rho method, in which some
function F is applied to wi to produce wi+1. The first collision might be unlucky
enough to involve w0, but otherwise it has the form wi+1 = wj+1 with wi 6= wj ,
revealing a collision F (wi) = F (wj) in the function F . Applications vary in how
they construct F and in the use that they make of a collision.

Assume, heuristically, that the probability of wi matching any particular value y
is proportional to the number of preimages of y, i.e., that Pr[wi = y] = #F−1(y)/`
where F−1(y) means {x : F (x) = y}. This heuristic is obviously wrong for w0, but
this is a minor error in context; the heuristic seems plausible for w1, . . . , wm, which
are each generated as outputs of F .

Assume that w0, . . . , wm are distinct. Define X as the set of preimages of
w1, . . . , wm, i.e., the disjoint union of F−1(w1), . . . , F−1(wm). Then the expected
size of X is∑

x

Pr[x ∈ X] =
∑
x

∑
i

Pr[F (x) = wi] =
∑
x

∑
i

∑
y

Pr[F (x) = y and wi = y].

Assume, heuristically, that F (x) = y and wi = y are independent events. Then the
expected size of X is

∑
i

∑
y

∑
x Pr[F (x) = y] Pr[wi = y] =

∑
i

∑
y #F−1(y)2/` =

m
∑

y #F−1(y)2/`.

Define V as the variance over y of #F−1(y). The average over y of #F−1(y)
is 1, so V = (

∑
y #F−1(y)2/`) − 1, so the expected size of X is mV + m. There

are m known elements w0, . . . , wm−1 of X; the expected number of elements of X
other than w0, . . . , wm−1 is mV . By hypothesis wm is none of w0, . . . , wm−1; if wm

were uniformly distributed subject to this constraint then it would have probability
mV/(`−m) ≈ mV/` of being in X and thus leading to a collision in the next step.

The
√
1−

∑
i p

2
i formula. As part of [1] we introduced the following streamlined

heuristic argument, concluding that the collision probability for wm+1 is approxi-
mately m(1 −

∑
i p

2
i )/`. This implies that the average number of multiplications

for a collision is approximately
√
π/2
√
`/
√

1−
∑

i p
2
i .

Fix a group element v, and let w and w′ be two independent uniform random
elements. Consider the event that w and w′ both map to v but w 6= w′. This



TWO GRUMPY GIANTS AND A BABY 7

event occurs if there are distinct i, j such that the following three conditions hold
simultaneously:

• v = siw = sjw
′;

• si is chosen for w;
• sj is chosen for w′.

These conditions have probability 1/`2, pi, and pj respectively. Summing over all

(i, j) gives the overall probability
(∑

i6=j pipj

)
/`2 =

(∑
i,j pipj −

∑
i p

2
i

)
/`2 =(

1−
∑

i p
2
i

)
/`2. This means that the probability of an immediate collision from w

and w′ is
(
1−

∑
i p

2
i

)
/`, where we added over the ` choices of v.

After m + 3 group elements one has approximately m2/2 potentially colliding
pairs. If the inputs to the iteration function were independent uniformly distributed

random points then the probability of success would be 1−
(
1−

(
1−

∑
i p

2
i

)
/`
)m2/2

and the average number of iterations before a collision would be approximately√
π/2
√
`/
√

1−
∑

i p
2
i . The inputs to the iteration function in Pollard’s rho method

are not actually independent, but this has no obvious effect on the average number
of iterations.

Relating the two formulas. We originally obtained the formula
√

1−
∑

i p
2
i by

specializing and simplifying the Brent–Pollard
√
V formula as follows.

The potential preimages of y are y/s1, y/s2, . . . , y/sr, which are actual preimages
with probabilities p1, p2, . . . , pr respectively. A subset I of {1, 2, . . . , r} matches
the set of indices of preimages with probability (

∏
i∈S pi)(

∏
i/∈S(1 − pi)), so the

average of #F−1(y)2 is
∑

I #I2(
∏

i∈S pi)(
∏

i/∈S(1−pi)). It is easy to see that most
monomials (e.g., p1p2p3) have coefficient 0 in this sum; the only exceptions are
linear monomials pi, which have coefficient 1, and quadratic monomials pipj with
i < j, which have coefficient 2. The sum therefore equals

∑
i pi + 2

∑
i,j:i<j pipj =∑

i pi + (
∑

i pi)
2 −

∑
i p

2
i = 2−

∑
i p

2
i . Hence V = 1−

∑
i p

2
i .

The
√
1− 1/r formula. In traditional “adding walks” (credited to Lenstra in

[20, page 66]; see also [21, page 295] and [25]), each pi is 1/r, and
√

1−
∑

i p
2
i

is
√

1− 1/r. This
√

1− 1/r formula first appeared in [25], with credit to the
subsequent paper [4] by Blackburn and Murphy. The heuristic argument in [4] is
the same as the Brent–Pollard argument.

Case study: Koblitz curves. The
√

1−
∑

i p
2
i formula was first used to optimize

walks on Koblitz curves. These walks map a curve point W to W + ϕi(W ), where
ϕ is the Frobenius map and i is chosen as a function of the Hamming weight of
the normal-basis representation of the x-coordinate of W . The Hamming weight is
not uniformly distributed, and any reasonable function of the Hamming weight is
also not uniformly distributed, so the

√
1− 1/r formula does not apply. Note that

these are “multiplying walks” rather than “adding walks” (if W = xiH + yiG then
W + ϕi(W ) = sixiH + siyiG for certain constants si ∈ (Z/`)∗), but the heuristics
in this section are trivially adapted to this setting.

As a concrete example we repeat from [1] the analysis of our ongoing attack on
ECC2K-130. All Hamming weights of x-coordinates of group elements are even,
and experiments show that the distribution of even-weighted words of length 131 is
close to the distribution of x-coordinates of group elements. Any iteration function
defined in this way therefore inevitably introduces an extra factor to the running



8 DANIEL J. BERNSTEIN AND TANJA LANGE

time of 1/

√
1−

∑
i

(
131
2i

)2
/2260 ≈ 1.053211, even if all 66 weights use different

scalars si. We extract just 3 bits of weight information, using only 8 different
values for the scalars, to reduce the time per iteration. The values are determined by
HW(xPi

)/2 mod 8; the distribution of
∑

i

(
131

16i+2j

)
for 0 ≤ j ≤ 7 gives probabilities

0.1414, 0.1443, 0.1359, 0.1212, 0.1086, 0.1057, 0.1141, 0.1288,

giving a total increase of the number of iterations by a factor of 1.069993.

4. Higher-degree local anti-collisions

Consider the rho method using r “steps” s1, s2, . . . , sr ∈ G, as in the previous
section. The method multiplies wi by one of these steps to obtain wi+1, multiplies
wi+1 by one of these steps to obtain wi+2, etc.

Assume that the step wi+1/wi is different from the step wi+2/wi+1, but that
wi+1/wi is the same as an earlier step wj+2/wj+1, and that wi+2/wi+1 is the same
as the step wj+1/wj . There are anti-collisions (i+1, j+2) and (i+2, j+1), exactly
the phenomenon discussed in the previous section: for example, wi+1 cannot equal
wj+2 unless wi equals wj+1. There is, however, also a local anti-collision (i+2, j+2)
not discussed in the previous section: wi+2 cannot equal wj+2 unless wi equals wj .
The point is that the ratio wi+2/wi is a product of two steps, and the ratio wi+2/wi

is a product of the same two steps in the opposite order.
We compute the heuristic impact of these “degree-2 local anti-collisions”, to-

gether with the degree-1 local anti-collisions of Section 3, as follows. Assume for
simplicity that 1, s1, s2, . . . , sr, s

2
1, s1s2, . . . , s1sr, s

2
2, . . . , s2sr, . . . , s

2
r−1, sr−1sr, s

2
r

are distinct. Write F (w) for the group element that w maps to. Fix a group element
v, and consider the event that two independent uniform random group elements
w,w′ have F (F (w)) = v = F (F (w′)) with no collisions among w,w′, F (w), F (w′).
This event occurs if there are i, i′, j, j′ with sj 6= sj′ and sjsi 6= sj′si′ such that the
following conditions hold simultaneously:

• v = sjsiw = sj′si′w
′;

• F (w) = siw;
• F (siw) = sjsiw;
• F (w′) = si′w

′;
• F (si′w

′) = sj′si′w
′.

These conditions have probability 1/`2, pi, pj , pi′ , and pj′ respectively. Given
the first condition, the remaining conditions are independent of each other, since
w = v/(sjsi), siw = v/sj , w

′ = v/(sj′si′), and si′w
′ = v/sj′ are distinct. This

event thus has probability
∑
pipjpi′pj′/`

2 where the sum is over all i, j, i′, j′ with
sj 6= sj′ and sjsi 6= sj′si′ . The complement of the sum is over all i, j, i′, j′ with
sj = sj′ or sjsi = sj′si′ , i.e., with j = j′ or with i′ = j 6= j′ = i. The complement
is thus

∑
j p

2
j +

∑
i,j:i 6=j p

2
i p

2
j =

∑
j p

2
j + (

∑
j p

2
j )2 −

∑
j p

4
j , and the original sum is

1 −
∑

j p
2
j − (

∑
j p

2
j )2 +

∑
j p

4
j . Adding over all v gives probability (1 −

∑
j p

2
j −

(
∑

j p
2
j )2 +

∑
j p

4
j )/` of this type of two-step collision between w and w′.

For example, if pi = 1/r for all i, then the degree-1-and-2 nonrandomness factor

is 1/
√

1− 1/r − 1/r2 + 1/r3, whereas the Brent–Pollard (degree-1) nonrandomness

factor is 1/
√

1− 1/r. These factors are noticeably different if r is small.



TWO GRUMPY GIANTS AND A BABY 9

Beyond degree 2. More generally, a “degree-k local anti-collision” (i+ k, j + k)
occurs when the product of k successive steps wi+1/wi, wi+2/wi+1, etc. matches
the product of k successive steps wj+1/wj , wj+2/wj+1, etc., without a lower-degree
local anti-collision occurring. A “degree-(k, k′) local anti-collision” (i+ k, j + k′) is
defined similarly.

Given the vector (s1, s2, . . . , sr), one can straightforwardly compute the overall
heuristic effect of local anti-collisions of degree at most k, by summing the products
pi1 · · · pikpi′1 · · · pi′k for which 1, si1 , si′1 , si1si2 , si′1si′2 , etc. are distinct. Experiments
indicate that the largest contribution is usually from the smallest degrees.

We emphasize that the results depend on the vector (s1, s2, . . . , sr), because
generic commutative-group equations such as s1s2 = s2s1 are not the only multi-
plicative dependencies among s1, s2, . . . , sr. One can check that s1, s2, . . . , sr have
no non-generic multiplicative dependencies of small degree (and modify them to
avoid such dependencies), but they always have medium-degree non-generic mul-
tiplicative dependencies, including mixed-degree non-generic multiplicative depen-
dencies.

If s1, s2, . . . , sr have only generic dependencies of degree at most k then the sum
described above is expressible as a polynomial in the easily computed quantities
X2 =

∑
j p

2
j , X4 =

∑
j p

4
j , etc., by a simple inclusion-exclusion argument. For

example, the degree-1 nonrandomness factor is 1/
√

1−X2, as in Section 3; the

degree-≤2 nonrandomness factor is 1/
√

1−X2 −X2
2 +X4, as explained above; the

degree-≤3 nonrandomness factor is 1/
√

1−X2 −X2
2 +X4 − 3X3

2 + 7X2X4 − 4X6;
the degree-≤4 nonrandomness factor is

1/
√

1−X2−X2
2+X4−3X3

2+7X2X4−4X6−13X4
2+53X2

2X4−56X2X6−17X2
4+33X8;

etc. In the uniform case these factors are 1/
√

1− 1/r, 1/
√

1− 1/r − 1/r2 + 1/r3,

1/
√

1− 1/r − 1/r2 − 2/r3 + 7/r4 − 4/r5, etc.

Case study: r = 6. Hildebrand showed in [13] that almost every r-adding walk
(with pj = 1/r) reaches a nearly uniform distribution in Z/` within O(`2/(r−1))

steps; in particular, within o(
√
`) steps for r ≥ 6. Implementors optimizing Pollard’s

rho method for hardware often want r to be as small as possible (to minimize the
storage required for precomputed steps and the cost of accessing that storage), and
in light of Hildebrand’s result can reasonably choose r = 6. This raises the question
of how random a 6-adding walk is; perhaps it is better to take a larger value of r,
increasing overhead but reducing nonrandomness.

For r = 6, with p1 = p2 = p3 = p4 = p5 = p6 = 1/6 and generic s1, . . . , s6, the
heuristic nonrandomness factors are approximately 1.095445 for degree 1; 1.110984
for degree ≤ 2; 1.117208 for degree ≤ 3; 1.120473 for degree ≤ 4; 1.122452 for
degree ≤ 5; 1.123767 for degree ≤ 6; 1.124696 for degree ≤ 7; 1.125383 for degree
≤ 8; 1.125909 for degree ≤ 9; 1.126322 for degree ≤ 10; 1.126654 for degree ≤ 11;
1.126926 for degree ≤ 12; 1.127151 for degree ≤ 13; 1.127341 for degree ≤ 14;
1.127503 for degree ≤ 15; etc. These factors converge to 1.129162 as the degree
increases; see Appendix A. Evidently the Brent–Pollard heuristic captures most of
the impact of local anti-collisions for r = 6, but not all of the impact.

We tried 230 experiments for ` = 1009. Each experiment generated 6 uniform
random steps s1, s2, . . . , s6 (without enforcing distinctness, and without any con-
straints on higher-degree multiplicative dependencies), carried out a random walk



10 DANIEL J. BERNSTEIN AND TANJA LANGE

` factor experiments
1009 1.150103 230

10007 1.147846 230

100003 1.141268 230

1000003 1.136129 230

10000019 1.132923 230

100000007 1.131149 229

1000000007 1.130136 227

10000000019 1.129580 224

Table 4.1. Observed average walk length until a collision, for
a uniform random walk in Z/` using 6 uniform random steps.

“Factor” is the observed average walk length divided by
√
π/2
√
`,

rounded to 6 digits after the decimal point. “Experiments” is the
number of experiments carried out for `.

using s1, s2, . . . , s6 with equal probability, and stopped at the first collision. The
average walk length was approximately 1.150103 times

√
π/2
√
`; note that this does

not count the multiplications used to generate s1, s2, . . . , s6. We then tried several
larger values of `; the resulting nonrandomness factors are shown in Table 4.1. Our
heuristics predict that these numbers will converge to approximately 1.129162 as
`→∞, rather than 1.095445.

Note that for small ` there is a larger chance of low-degree dependencies among
the steps si, so it is not a surprise that smaller values of ` have larger nonrandomness
factors. We do not know whether a quantitative analysis of this phenomenon would
predict the numbers shown in Table 4.1 for small `, or whether other phenomena
also play a role.

Case study: Koblitz curves, revisited. Consider again the ECC2K-130 walk
introduced in [1]. Here ` = 680564733841876926932320129493409985129.

For 0 ≤ j ≤ 7 define ϕ as the Frobenius map on the ECC2K-130 curve, and
define sj ∈ Z/` as 1 + 196511074115861092422032515080945363956j+3. This walk
moves from P to P + ϕj+3(P ) = sjP if the Hamming weight of the x-coordinate
of P is congruent to 2j modulo 16; this occurs with probability (almost exactly)
pj =

∑
i

(
131

16i+2j

)
/2130.

The only small-degree multiplicative dependencies among s0, . . . , s7 are generic
commutative-group equations such as s1s2 = s2s1. We already reported this in
[1, Section 2] to explain why the walk is highly unlikely to enter a short cycle.
We point out here that this has a larger effect, namely minimizing small-degree
anti-collisions. We now analyze the impact of the small-degree anti-collisions that
remain, those that arise from the generic commutative-group equations.

For degree 1 the nonrandomness factor is 1/
√

1−X2 ≈ 1.069993. For degree

≤ 2 the nonrandomness factor is 1/
√

1−X2 −X2
2 +X4 ≈ 1.078620. For degree

≤ 3 the nonrandomness factor is 1/
√

1−X2 −X2
2 − 3X3

2 +X4 + 7X2X4 − 4X6 ≈
1.081370. For degree ≤ 4 the nonrandomness factor is ≈ 1.082550.



TWO GRUMPY GIANTS AND A BABY 11

Case study: Mixed walks. The same type of analysis should also apply to
“mixed walks” combining non-commuting steps such as w 7→ ws1, w 7→ ws2, and
w 7→ w2. However, we have not yet carried out experiments.

Optimizing asymptotics. It is frequently stated that the rho method, like a truly
random walk, finishes in (

√
π/2 + o(1))

√
` multiplications on average.

However, the experimental results by Sattler and Schnorr [20, page 76] and by

Teske [25] showed clearly that
√
π/2+o(1) is not achieved by small values of r, and

in particular by Pollard’s original rho method. The Brent–Pollard nonrandomness,
and in particular the

√
1− 1/r formula, indicates that

√
π/2+o(1) is not achieved

by any bounded r; one must have 1/r ∈ o(1), i.e., r →∞ as `→∞. On the other
hand, if r grows too quickly then the cost of setting up r steps is nonnegligible.

This analysis does not contradict
√
π/2 + o(1). However, it does indicate that

some care is required in the algorithm details, and that
√
π/2+o(1) can be replaced

by
√
π/2 +O(`−1/4) but not by

√
π/2 + o(`−1/4).

To optimize the o(1) one might try choosing steps that are particularly easy to
compute. For example, one might take s3 = s1s2, s4 = s2s3, etc., where s1, s2 are
random. We point out, however, that such choices are particularly prone to higher-
degree anti-collisions. We recommend taking into account not just the number of
steps and the number of multiplications required to precompute those steps, but
also the impact of higher-degree anti-collisions.

5. Searching for better chains for small primes

If ` is small then by simply enumerating addition chains one can find generic
discrete-logarithm algorithms that use fewer multiplications than the rho method.

This section reports, for each small prime `, the results of two different computer
searches. One search greedily obtained as many slopes as it could after each multi-
plication, deferring anti-collisions as long as possible. The other search minimized
the number of multiplications required to find an average slope. Chains found by
such searches are directly usable in discrete-logarithm computations for these val-
ues of `; perhaps they also provide some indication of what one can hope to achieve
for much larger values of `. These searches also show that merely counting the size
of a slope cover, as in [9, Section 3], underestimates the cost of discrete-logarithm
algorithms, although one can hope that the gap becomes negligible as ` increases.

A continuing theme in this section is that the obvious quantification of the
Nechaev–Shoup bound is not tight. The bound says that an m-addition chain has
≤(m+ 3)(m+ 2)/2 slopes; but there is actually a gap, increasing with m, between
(m + 3)(m + 2)/2 and the maximum number of slopes in an m-addition chain.
This section explains part of this gap by identifying two types of anti-collisions
that addition chains cannot avoid and stating an improved bound that accounts
for these anti-collisions. However, the improved bound is still not tight for most of
these values of `, and for long chains the improved bound is only negligibly stronger
than the Nechaev–Shoup bound.

Greedy slopes. Define di as the number of distinct finite slopes among the points
(x0, y0), (x1, y1), (x2, y2), . . . , (xi, yi) in (Z/`)2. For example, the chain

(0, 0), (0, 1), (1, 0), (0, 2), (1, 2), (1, 4)



12 DANIEL J. BERNSTEIN AND TANJA LANGE

in (Z/7)2 has (d0, d1, d2, d3, d4, d5) = (0, 0, 2, 3, 5, 7): there are 2 distinct finite slopes
among (0, 0), (0, 1), (1, 0); 3 distinct finite slopes among (0, 0), (0, 1), (1, 0), (0, 2);
5 distinct finite slopes among (0, 0), (0, 1), (1, 0), (0, 2), (1, 2); and 7 distinct finite
slopes among (0, 0), (0, 1), (1, 0), (0, 2), (1, 2), (1, 4).

For each prime ` < 128 we computed the lexicographically maximum sequence
(d0, d1, . . .) for all infinite addition chains starting (0, 0), (0, 1), (1, 0) in (Z/`)2.
These maxima, truncated to the first occurrence of `, are displayed in Table 5.1. For
example, Table 5.1 lists (0, 0, 2, 3, 5, 7) for ` = 7, indicating that the lexicographic
maximum is (0, 0, 2, 3, 5, 7, 7, 7, 7, 7, . . .): one always has d0 = 0, d1 = 0, and d2 = 2;
the maximum possible d3 is 3; given d3 = 3, the maximum possible d4 is 5; given
d3 = 3 and d4 = 5, the maximum possible d5 is 7.

This computation was not quite instantaneous, because it naturally ended up
computing all finite chains achieving the truncated maximum (and, along the way,
all chains achieving every prefix of the truncated maximum). There are, e.g., 5420
length-21 chains that match the (d0, d1, . . .) shown in Table 5.1 for ` = 109.

Minimal weight. We also computed `-slope addition chains of minimal weight for
each prime ` < 48. Here “weight” means

∑
i≥1 i(di − di−1). Dividing this weight

by ` produces the average, over all s ∈ Z/`, of the number of multiplications (plus
2 to account for the inputs g and h) used to find slope s. It might make more
sense to compute (` − 1)-slope addition chains of minimal weight, since a generic
discrete-logarithm algorithm that finds ` − 1 slopes also recognizes the remaining
slope by exclusion, but the gap becomes negligible as ` increases.

Lexicographically maximizing (d0, d1, . . .), as in Table 5.1, does not always pro-
duce minimal-weight `-slope addition chains. For example, the chain

(0, 0), (0, 1), (1, 0), (0, 2), (0, 3), (1, 3), (1, 6), (2, 12), (2, 14), (2, 16), (3, 17), (4, 28)

for ` = 29 has weight 210 with (d0, d1, . . .) = (0, 0, 2, 3, 4, 7, 10, 14, 19, 23, 27, 29),
while chains achieving the lexicographic maximum in Table 5.1 have weight 211.
We similarly found weight 299 (compared to 300) for ` = 37, weight 372 (compared
to 375) for ` = 43, and weight 423 (compared to 425) for ` = 47. It is not clear
whether this gap becomes negligible as ` increases.

Some obstructions. We explain here two simple ways that anti-collisions appear
in addition chains. Every addition chain produces at least a linear number of anti-
collisions that follow these simple patterns.

First, doubling a point (xj , yj) produces two anti-collisions: the slopes from
2(xj , yj) to (xj , yj) and to (0, 0) are the same as the slope from (xj , yj) to (0, 0).
Doubling another point (xk, yk) produces three anti-collisions: the slope from
2(xk, yk) to 2(xj , yj) is the same as the slope from (xk, yk) to (xj , yj). A third
doubling produces four anti-collisions, and so on; doubling n points produces a
total of n(n+ 3)/2 anti-collisions of this type.

Second, adding (xi, yi) to a distinct point (xj , yj) produces two anti-collisions:
the slopes from (xi, yi)+(xj , yj) to (xi, yi) and to (xj , yj) are the same as the slopes
from (xj , yj) and from (xi, yi) to (0, 0). Subsequently adding the same (xi, yi) to
another point (xk, yk) produces three anti-collisions: the slope from (xi, yi)+(xk, yk)
to (xi, yi) + (xj , yj) is the same as the slope from (xk, yk) to (xj , yj), exactly as in
Section 3.

Applying these principles easily explains the initial pattern 0, 0, 2, 3, 5, 7 that
appears in Table 5.1. The first addition (whether or not a doubling) must produce



TWO GRUMPY GIANTS AND A BABY 13

` weight d0 d1 . . .

2 4 0 0 2
3 7 0 0 2 3
5 15 0 0 2 3 5
7 25 0 0 2 3 5 7

11 50 0 0 2 3 5 7 10 11
13 64 0 0 2 3 5 7 10 13
17 96 0 0 2 3 5 7 10 14 16 17
19 113 0 0 2 3 5 7 10 14 17 19
23 148 0 0 2 3 5 7 10 14 19 22 23
29 211 0 0 2 3 5 7 10 14 19 23 26 28 29
31 230 0 0 2 3 5 7 10 14 19 23 28 31
37 300 0 0 2 3 5 7 10 14 19 23 29 33 36 37
41 347 0 0 2 3 5 7 10 14 19 24 29 34 39 41
43 375 0 0 2 3 5 7 10 14 19 24 29 34 38 42 43
47 425 0 0 2 3 5 7 10 14 19 24 30 35 40 44 47
53 510 0 0 2 3 5 7 10 14 19 24 30 36 41 45 50 52 53
59 596 0 0 2 3 5 7 10 14 19 24 30 36 42 48 52 57 58 59
61 631 0 0 2 3 5 7 10 14 19 24 30 35 42 48 52 56 59 61
67 727 0 0 2 3 5 7 10 14 19 24 30 36 41 47 53 59 63 66 67
71 788 0 0 2 3 5 7 10 14 19 24 30 36 42 48 54 60 66 70 71
73 815 0 0 2 3 5 7 10 14 19 24 30 36 43 50 56 62 67 71 73
79 919 0 0 2 3 5 7 10 14 19 24 30 37 43 49 57 64 69 73 76 79
83 978 0 0 2 3 5 7 10 14 19 24 30 37 44 51 59 65 72 77 80 83
89 1081 0 0 2 3 5 7 10 14 19 24 30 37 44 53 60 66 74 80 84 87 89
97 1224 0 0 2 3 5 7 10 14 19 24 30 37 44 51 61 69 78 83 88 92 96 97

101 1307 0 0 2 3 5 7 10 14 19 24 30 37 45 53 60 69 76 82 89 93 97 100 101
103 1351 0 0 2 3 5 7 10 14 19 24 30 37 45 52 60 67 74 83 89 94 98 102 103
107 1422 0 0 2 3 5 7 10 14 19 24 30 37 45 53 61 70 77 84 91 96 100 104 107
109 1466 0 0 2 3 5 7 10 14 19 24 30 37 44 52 60 68 77 84 91 98 102 106 108 109
113 1536 0 0 2 3 5 7 10 14 19 24 30 37 44 52 62 70 78 86 94 99 105 109 113
127 1806 0 0 2 3 5 7 10 14 19 24 30 37 45 53 63 73 84 92 98 105 112 118 122 126 127

Table 5.1. For each ` < 128, the lexicographically maximum
(d0, d1, . . .). “Weight” means

∑
i≥1 i(di − di−1).

at least two anti-collisions, and therefore produces at most one new slope to the
previous three points; this explains the 3. The second addition also produces at
least two anti-collisions, and therefore at most two new slopes to the previous four
points; this explains the 5. One might think that the next step is 8, but having
only two anti-collisions in each of the first three additions would imply that those
three additions include at most one doubling and no other reuse of summands, for
a total of at least five summands, while there are only four non-zero summands
available for the first three additions.

More generally, a chain of m ≥ 2 nontrivial additions involves 2m inputs selected
from m + 1 nonzero points, so there must be at least m − 1 repetitions of inputs.
These repetitions produce at least m − 2 occurrences of three anti-collisions (one
doubling is free), on top of m occurrences of two anti-collisions and one anti-collision
for the infinite slope from (0, 0) to (0, 1), for a total of at least 3m−1 anti-collisions,



14 DANIEL J. BERNSTEIN AND TANJA LANGE

and thus a total of at most (m+ 3)(m+ 2)/2− (3m− 1) = (m2 −m+ 8)/2 slopes.
This explains 5, 7, 10, 14, 19 in Table 5.1 but does not explain 24.

6. Two grumpy giants and a baby

This section presents the algorithm featured in the title of this paper. This
algorithm is, as the name suggests, a modification to the standard baby-step-giant-
step method. The modification increases the number of different slopes produced
within m multiplications, and for a typical range of m increases the number beyond
the effectiveness of the rho method.

In the baby-step-giant-step algorithm the baby steps compute hxigyi for (xi, yi) ∈
(0, 0) + {0, 1, 2, . . . , d

√
`e}(0, 1) and the giant steps compute hxigyi for (xi, yi) ∈

(1, 0) + {0, 1, 2, . . . , b
√
`c}(0, d

√
`e). The first observation is that the slopes within

one type of step are constant; the second observation is that once all steps are done
all ` slopes appear. Our idea is to make the lines of fixed slope shorter, i.e. introduce
more players. Note that introducing a second baby is not useful: lines between the
points in (x, y) + {0, 1, 2, . . . , d

√
`e}(0, 1) and (0, 0) + {0, 1, 2, . . . , d

√
`e}(0, 1) repeat

each slope ≈
√
` times. We thus need to introduce more giants to make progress.

The two-grumpy-giants-and-a-baby method is parametrized by a positive integer
n, normally proportional to

√
`; the reader should imagine n being approximately

0.5
√
`. The number of multiplications in the method is approximately 3n. Here is

the set of points (xi, yi) ∈ (Z/`)2 produced by the method:

Baby: (0, 0) + {0, . . . , n− 1}(0, 1)
Giant1: (1, 0) + {1, . . . , n}(0, n)
Giant2: (2, 0)− {1, . . . , n}(0, n+ 1)

The initial negation (0,−(n + 1)) for Giant2 has negligible cost, approximately
lg ` multiplications. Choosing n and n+1 for the steps in the y direction for the two
giants gives a good coverage of slopes since n and n+ 1 are coprime. The grumpy
giants make big steps (on the scale of

√
`) and quickly walk in opposite directions

away from each other. Luckily they are not minding the baby.
We now analyze the slopes covered by this method. Again it is not interesting to

look at the slopes among one type of points. The slope between a point (0, i) in the
Baby set and a point (1, jn) in the Giant1 set is jn− i; this means that all slopes in
{1, . . . , n2} are covered. The slope between (0, i) in the Baby set and (2,−j(n+1))
in the Giant2 set is (−j(n+1)− i)/2 ∈

{
−n2 − 2n+ 1, . . . ,−n− 1

}
/2; there are n2

distinct slopes here, almost exactly covering
{
−n2 − 2n+ 1, . . . ,−n− 1

}
/2. The

slope between (1, in) in the Giant1 set and (2,−j(n + 1)) in the Giant2 set is
−j(n + 1) − in ∈

{
−2n2 − n, . . . ,−2n− 1

}
; there are another n2 distinct slopes

here, covering about half the elements of
{
−2n2 − n, . . . ,−2n− 1

}
.

To summarize, there are three sets of n2 distinct slopes here, all between −2n2−
n + 1 and n2. One can hope for a total of 3n2 distinct slopes if ` > 3n2 + n, but
this hope runs into two obstacles. The first obstacle is that the “odd” elements of{
−n2 − 2n+ 1, . . . ,−n− 1

}
can bump into the other sets when computing (2i +

1)/2 = i+(`+1/2); but for ` ∈ 4n2+O(n) this effect loses only O(n) elements. The
second obstacle is that any Giant1–Giant2 slopes between (−n2−2n)/2 and (−n−
2)/2 will bump into

{
−n2 − 2n+ 1, . . . ,−n− 1

}
/2 for the the “even” elements

of
{
−n2 − 2n+ 1, . . . ,−n− 1

}
. This is approximately the rightmost 1/4 of the

Giant1–Giant2 interval, but only n2/8 + O(n) of the Giant1–Giant2 slopes are in



TWO GRUMPY GIANTS AND A BABY 15

this interval. Overall there are 23n2/8 +O(n) distinct slopes, i.e., (0.71875 +o(1))`
distinct slopes.

For comparison, the same (3 + o(1))n multiplications allow the original baby-
step-giant-step method to compute (1.5+o(1))n baby steps and (1.5+o(1))n giant
steps, producing only (2.25 + o(1))n2 = (0.5625 + o(1))` distinct slopes. The same
number of multiplications in the rho method (with 1/o(1) different steps, simulating
a uniform random walk within a factor 1+o(1)) produces (9+o(1))n2/2 = (1.125+
o(1))` random slopes, and thus (1−exp(1.125)+o(1))` = (0.6753 . . .+o(1))` distinct
slopes with overwhelming probability. We have performed computer experiments
to check each of these numbers.

Weighing the giants. We repeat a warning from Section 1: one algorithm can be
better than another after a particular number of multiplications but nevertheless
have worse average-case performance.

For example, the baby-step-giant-step method has two standard variants, which
we call the baby-steps-then-giant-steps method (introduced by Shanks in [22, pages
419–420]) and the interleaved-baby-step-giant-step method (introduced much later
by Pollard in [17, page 439, top]). Both variants (with giant steps chosen to be of

size (1+o(1))
√
`) reach 100% success probability using (2+o(1))

√
` multiplications,

while the rho method has a lower success probability for that number of multiplica-
tions. Average-case performance tells a quite different story: the baby-steps-then-
giant-steps method uses (1.5 + o(1))

√
` multiplications on average; the interleaved-

baby-step-giant-step method is better, using (4/3+o(1))
√
` = (1.3333 . . .+o(1))

√
`

multiplications on average; the rho method is best, using (
√
π/2 + o(1))

√
` =

(1.2533 . . .+ o(1))
√
` multiplications on average.

Our analysis above shows that the two-grumpy-giants-and-a-baby method is
more effective than the rho method (and the baby-step-giant-step method) as a way

to use (1.5 + o(1))
√
` multiplications. One might nevertheless guess that the rho

method has better average-case performance; for example, an anonymous referee
stated that the new method “presumably has worse average-case running time”.

Our computer experiments indicate that the (interleaved-)two-grumpy-giants-
and-a-baby method actually has better average-case running time than the rho
method. For example, for ` = 65537, we found a chain of weight 20644183 =
(1.23046 . . .)`1.5 with the two-grumpy-giants-and-a-baby method. Here we chose
n = 146, used (suboptimal) binary addition chains for (0, n) and (0, `−n− 1), and
then cycled between points (0, i) and (1, in) and (2,−i(n+1)) until we had ` different
slopes. For ` = 1000003 we found a chain of weight 1205458963 = (1.20545 . . .)`1.5

in the same way with n = 558.

Variants. We have been exploring many variants of this algorithm. We have found
experimentally that a 4-giants algorithm (two in one direction, two in the other,
with computer-optimized shifts of the initial positions) outperforms this 2-giants

algorithm for m ≈
√
`. We speculate that gradually increasing the number of giants

will produce an algorithm with (0.5 + o(1))m2 distinct slopes, the best possible
result (automatically also optimizing the average number of multiplications, the
maximum, etc.), but it is not clear how to choose the shift distances properly.



16 DANIEL J. BERNSTEIN AND TANJA LANGE

References

[1] Daniel V. Bailey, Lejla Batina, Daniel J. Bernstein, Peter Birkner, Joppe W. Bos, Hsieh-
Chung Chen, Chen-Mou Cheng, Gauthier van Damme, Giacomo de Meulenaer, Luis Ju-

lian Dominguez Perez, Junfeng Fan, Tim Güneysu, Frank Gurkaynak, Thorsten Kleinjung,

Tanja Lange, Nele Mentens, Ruben Niederhagen, Christof Paar, Francesco Regazzoni, Peter
Schwabe, Leif Uhsadel, Anthony Van Herrewege, Bo-Yin Yang, Breaking ECC2K-130 (2009).

URL: http://eprint.iacr.org/2009/541. Citations in this document: §3, §3, §4, §4.

[2] Pierre Barrucand, Sur la somme des puissances des coefficients multinomiaux et les puis-
sances successives d’une fonction de Bessel, Comptes Rendus des Séances de l’Académie des

Sciences 258 (1964), 5318–5320. URL: http://gallica.bnf.fr/ark:/12148/cb343481087/

date.r=.langEN. Citations in this document: §A, §A.

[3] Daniel J. Bernstein, Tanja Lange, Peter Schwabe, On the correct use of the negation map in

the Pollard rho method, in PKC 2011 [8] (2011), 128–146. URL: http://eprint.iacr.org/
2011/003. Citations in this document: §1.

[4] Simon R. Blackburn, Sean Murphy, The number of partitions in Pollard rho, technical re-

port RHUL-MA-2011-11, Department of Mathematics, Royal Holloway, University of London
(2011). URL: http://www.ma.rhul.ac.uk/static/techrep/2011/RHUL-MA-2011-11.pdf. Ci-

tations in this document: §3, §3.

[5] Jonathan M. Borwein, Dirk Nuyens, Armin Straub, James Wan, Some arithmetic proper-
ties of short random walk integrals, Ramanujan Journal 26 (2011), 109–132. URL: http://

arminstraub.com/pub/random-walk-integrals. Citations in this document: §A.

[6] Joppe W. Bos, Thorsten Kleinjung, Arjen K. Lenstra, On the use of the negation map in the
Pollard rho method, in ANTS 2010 [12] (2010), 66–82. URL: http://infoscience.epfl.ch/

record/164553/files/NPDF-45.pdf. Citations in this document: §1.
[7] Richard P. Brent, John M. Pollard, Factorization of the eighth Fermat number, Mathematics

of Computation 36 (1981), 627–630. ISSN 0025–5718. MR 83h:10014. URL: http://www.cs.

ox.ac.uk/people/richard.brent/pub/pub061.html. Citations in this document: §1, §3.
[8] Dario Catalano, Nelly Fazio, Rosario Gennaro, Antonio Nicolosi (editors), Public key

cryptography — PKC 2011 — 14th international conference on practice and theory in pub-

lic key cryptography, Taormina, Italy, March 6–9, 2011, Lecture Notes in Computer Science,
6571, Springer, 2011. See [3].

[9] M. A. Chateauneuf, Alan C. H. Ling, Douglas R. Stinson, Slope packings and coverings, and

generic algorithms for the discrete logarithm problem, Journal of Combinatorial Designs 11
(2003), 36–50. URL: http://eprint.iacr.org/2001/094. Citations in this document: §2, §2,

§2, §2, §5.

[10] Jung Hee Cheon, Jin Hong, Minkyu Kim, Speeding up the Pollard rho method on
prime fields, in Asiacrypt 2008 [16] (2008), 471–488. URL: http://www.iacr.org/archive/

asiacrypt2008/53500477/53500477.pdf. Citations in this document: §1.

[11] Walter Fumy (editor), Advances in cryptology — EUROCRYPT ’97, international conference
on the theory and application of cryptographic techniques, Konstanz, Germany, May 11–15,

1997, Lecture Notes in Computer Science, 1233, Springer, 1997. See [24].
[12] Guillaume Hanrot, François Morain, Emmanuel Thomé (editors), Algorithmic number theory,

9th international symposium, ANTS-IX, Nancy, France, July 19–23, 2010, Lecture Notes in
Computer Science, 6197, Springer, 2010. See [6].

[13] Martin Hildebrand, Random walks supported on random points of Z/nZ, Probability Theory

and Related Fields 100 (1994), 191–203. MR 95j:60015. Citations in this document: §4.

[14] Donald J. Lewis (editor), 1969 Number Theory Institute: proceedings of the 1969 summer
institute on number theory: analytic number theory, Diophantine problems, and algebraic

number theory; held at the State University of New York at Stony Brook, Stony Brook, Long
Island, New York, July 7–August 1, 1969, Proceedings of Symposia in Pure Mathematics,
20, American Mathematical Society, Providence, Rhode Island, 1971. ISBN 0-8218-1420-6.

MR 47:3286. See [22].

[15] Vasilĭı I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm, Math-
ematical Notes 55 (1994), 165–172. Citations in this document: §2.

[16] Josef Pieprzyk (editor), Advances in cryptology — ASIACRYPT 2008, 14th international
conference on the theory and application of cryptology and information security, Melbourne,

http://eprint.iacr.org/2009/541
http://gallica.bnf.fr/ark:/12148/cb343481087/date.r=.langEN
http://gallica.bnf.fr/ark:/12148/cb343481087/date.r=.langEN
http://eprint.iacr.org/2011/003
http://eprint.iacr.org/2011/003
http://www.ma.rhul.ac.uk/static/techrep/2011/RHUL-MA-2011-11.pdf
http://arminstraub.com/pub/random-walk-integrals
http://arminstraub.com/pub/random-walk-integrals
http://infoscience.epfl.ch/record/164553/files/NPDF-45.pdf
http://infoscience.epfl.ch/record/164553/files/NPDF-45.pdf
http://www.cs.ox.ac.uk/people/richard.brent/pub/pub061.html
http://www.cs.ox.ac.uk/people/richard.brent/pub/pub061.html
http://eprint.iacr.org/2001/094
http://www.iacr.org/archive/asiacrypt2008/53500477/53500477.pdf
http://www.iacr.org/archive/asiacrypt2008/53500477/53500477.pdf


TWO GRUMPY GIANTS AND A BABY 17

Australia, December 7–11, 2008, Lecture Notes in Computer Science, 5350, Springer, 2008.

See [10].

[17] John M. Pollard, Kangaroos, Monopoly and discrete logarithms, Journal of Cryptology 13
(2000), 437–447. Citations in this document: §6.

[18] Bruce Richmond, Cecil Rousseau, A multinomial summation: Comment on Problem 87-

2, SIAM Review 31 (1989), 122–125. URL: http://epubs.siam.org/sirev/resource/1/

siread/v31/i1. Citations in this document: §A, §A, §A.

[19] L. B. Richmond, Jeffrey Shallit, Counting abelian squares, Electronic Journal of Com-

binatorics 16 (2009), Research Paper 72, 9 pp. ISSN 1077-8926. URL: http://www.

combinatorics.org/Volume_16/PDF/v16i1r72.pdf. Citations in this document: §A, §A, §A,

§A.

[20] Jürgen Sattler, Claus-Peter Schnorr, Generating random walks in groups, Annales Univer-
sitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae. Sectio Computatorica

6 (1989), 65–79. ISSN 0138-9491. MR 89a:68108. URL: http://ac.inf.elte.hu/Vol_006_

1985/065.pdf. Citations in this document: §3, §4.

[21] Claus-Peter Schnorr, Hendrik W. Lenstra, Jr., A Monte Carlo factoring algorithm with

linear storage, Mathematics of Computation 43 (1984), 289–311. ISSN 0025-5718. MR
85d:11106. URL: http://www.ams.org/mcom/1984-43-167/S0025-5718-1984-0744939-5/

S0025-5718-1984-0744939-5.pdf. Citations in this document: §3.

[22] Daniel Shanks, Class number, a theory of factorization, and genera, in [14] (1971), 415–440.
MR 47:4932. Citations in this document: §6.

[23] Neil J. A. Sloane, The on-line encyclopedia of integer sequences (2012). URL: http://oeis.

org. Citations in this document: §A.
[24] Victor Shoup, Lower bounds for discrete logarithms and related problems, in EUROCRYPT

1997 [11] (1997), 256–266. URL: http://www.shoup.net/papers/. Citations in this document:

§2.
[25] Edlyn Teske, On random walks for Pollard’s rho method, Mathematics of Com-

putation 70 (2001), 809–825. URL: http://www.ams.org/journals/mcom/2001-70-234/

S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf. Citations in this document: §3, §3,

§4.

Appendix A. Computing limits of anti-collision factors

This appendix shows, for each integer r > 3, a reasonably fast method to com-
pute the limit of the sequence of generic uniform heuristic nonrandomness factors
1/
√

1− 1/r, 1/
√

1− 1/r − 1/r2 + 1/r3, 1/
√

1− 1/r − 1/r2 − 2/r3 + 7/r4 − 4/r5,
etc. considered in Section 4. For example, these factors converge to approximately
1.129162 for r = 6.

We are indebted to Neil Sloane’s Online Encyclopedia of Integer Sequences [23]
for leading us to [5] (by a search for the integer 4229523740916 shown below), and to
Armin Straub for explaining how to use [2] and [18] to compute the sum

∑
k uk/r

2k

discussed here. Our contribution here is the connection described below between
anti-collision factors and sums of squares of multinomials.

Review of sums of squares of multinomials. Define U =
∑

i

∑
j si/sj in the

r-variable function field Q(s1, . . . , sr), and define uk as the constant coefficient of
Uk. Consider the problem of computing

∑
k≥0 uk/r

2k.

Note that Uk =
∑

i1,...,ik

∑
j1,...,jk

si1 · · · sik/sj1 · · · sjk , so uk is the number

of tuples (i1, . . . , ik, j1, . . . , jk) such that si1 · · · sik/sj1 · · · sjk = 1, i.e., such that
(i1, . . . , ik) is a permutation of (j1, . . . , jk). The tuples counted here were named
“abelian squares” by Erdős in 1961, according to [19]; uk here is “fr(k)” in the
notation of [19].

For example, u0 = 1; u1 = r; and u2 = 2r2 − r, which one can partition into
counting 2r2 − 2r tuples (i1, i2, j1, j2) with i1 6= i2 and {i1, i2} = {j1, j2}, and r

http://epubs.siam.org/sirev/resource/1/siread/v31/i1
http://epubs.siam.org/sirev/resource/1/siread/v31/i1
http://www.combinatorics.org/Volume_16/PDF/v16i1r72.pdf
http://www.combinatorics.org/Volume_16/PDF/v16i1r72.pdf
http://ac.inf.elte.hu/Vol_006_1985/065.pdf
http://ac.inf.elte.hu/Vol_006_1985/065.pdf
http://www.ams.org/mcom/1984-43-167/S0025-5718-1984-0744939-5/S0025-5718-1984-0744939-5.pdf
http://www.ams.org/mcom/1984-43-167/S0025-5718-1984-0744939-5/S0025-5718-1984-0744939-5.pdf
http://oeis.org
http://oeis.org
http://www.shoup.net/papers/
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf


18 DANIEL J. BERNSTEIN AND TANJA LANGE

tuples with i1 = i2 = j1 = j2. More generally, the number of ways for si1 · · · sik to

equal sa1
1 · · · sar

r is the multinomial coefficient
(

k
a1,a2,...,ar

)
, so

uk =
∑

a1,a2,...,ar:
a1+a2+···+ar=k

(
k

a1, a2, . . . , ar

)2

=
∑
m≥0

(
r

m

) ∑
a1,a2,...,am:

a1+a2+···+am=k,
a1>0,a2>0,...,am>0

(
k

a1, a2, . . . , am

)2

.

Richmond and Rousseau, proving a conjecture of Ruehr, showed in [18] that
uk is asymptotically r2k+r/2/(4πk)(r−1)/2 as k → ∞. See also [19, Theorem 4]
for another proof. We conclude that

∑
k uk/r

2k converges for r > 3 (and not for
r = 3). For example, with r = 6, the ratio uk/r

2k is asymptotically 63/(4πk)2.5, so∑
k uk/r

2k converges, and the tail
∑

k>n uk/r
2k is Θ(1/n1.5).

This Θ is not an explicit bound; [18] and [19] are not stated constructively.
However, inspecting examples strongly suggests that (uk/r

2k)/(rr/2/(4πk)(r−1)/2)
converges upwards to 1 as k →∞, so it seems reasonably safe to hypothesize that
uk/r

2k is at most 2rr/2/(4πk)(r−1)/2. This hypothesis implies that∑
k>n

uk
r2k
≤
∑
k>n

2rr/2

(4πk)(r−1)/2
<

∫ ∞
n

2rr/2

(4πk)(r−1)/2
dk =

4rr/2

(4π)(r−1)/2(r − 3)n(r−3)/2
,

so to compute tight bounds on
∑

k uk/r
2k it suffices to compute

∑
0≤k≤n uk/r

2k

for a moderately large integer n.
One can easily use the multinomial formula above to compute, e.g., u10 =

4229523740916 for r = 6, but if k and r are not very small then it is much more
efficient to compute uk from the generating function

∑
k ukx

k/k!2 = (
∑

k x
k/k!2)r

in the power-series ring Q[[x]]. Barrucand in [2] pointed out this formula for uk
and explained how to use it to compute a recurrence for uk. For r = 6 we simply
computed the 6th power of

∑
k x

k/k!2 in Q[x]/x5001, obtaining the exact values of
uk for 0 ≤ k ≤ 5000 and concluding that

∑
0≤k≤5000 uk/6

2k ≈ 1.275007093. This
computation was fast enough that we did not bother to explore optimizations such
as computing (

∑
k x

k/k!2)r modulo various small primes or analyzing the numerical
stability of Barrucand’s recurrence.

Anti-collision factors via sums of squares of multinomials. Define hk as the

number of tuples (i1, i2, . . . , ik, j1, j2, . . . , jk) ∈ {1, . . . , r}2k such that

si1 6= sj1 ; si1si2 6= sj1sj2 ; . . . ; si1si2 · · · sik 6= sj1sj2 · · · sjk
in the polynomial ring Z[s1, . . . , sr]. For example, h0 = 1; h1 = r2 − r; and
h2 = r4 − r3 − r2 + r.

The degree-≤k generic uniform heuristic nonrandomness factor is 1/
√
hk/r2k.

The goal of this appendix is to compute limk→∞ 1/
√
hk/r2k.

Define Hk as the sum of quotients si1 · · · sik/sj1 · · · sjk over the tuples
(i1, . . . , ik, j1, . . . , jk) counted by hk. For k ≥ 1 the product Hk−1U =
Hk−1

∑
ik

∑
jk
sik/sjk is the sum of quotients si1 · · · sik/sj1 · · · sjk over the tuples

(i1, . . . , ik, j1, . . . , jk) with

si1 6= sj1 ; si1si2 6= sj1sj2 ; . . . ; si1si2 · · · sik−1
6= sj1sj2 · · · sjk−1

.

These are the same as the tuples contributing to Hk, except for tuples having
si1si2 · · · sik = sj1sj2 · · · sjk . The product Hk−1U is therefore the same as Hk,



TWO GRUMPY GIANTS AND A BABY 19

except for its constant coefficient. The constant coefficient of Hk is 0, so Hk =
Hk−1U − ck where ck is the constant coefficient of Hk−1U .

By induction Hk = Uk − c1Uk−1 − c2Uk−2 − · · · − ck. Recall that the constant
coefficient of Uk is uk, so 0 = uk − c1uk−1 − c2uk−2 − · · · − ck. In other words,
(1 − c1x − c2x2 − · · · )(1 + u1x + u2x

2 + · · · ) = 1 in the power-series ring Z[[x]].
For the same reason, the product (1 − c1x − · · · − ckxk)(1 + u1x + · · · + ukx

k) is
1− (c1uk + · · ·+ cku1)xk+1 − · · · − ckukx2k, so

(1− c1/r2 − · · · − ck/r2k)(1 + u1/r
2 + · · ·+ uk/r

2k) = 1− εk
where εk = (c1uk + · · · + cku1)/r2k+2 + · · · + ckuk/r

4k. The bounds 0 ≤ εk ≤
uk+1/r

2k+2 + uk+2/r
2k+4 + · · · show that εk → 0 as k →∞, so

(1− c1/r2 − c2/r4 − · · · )(1 + u1/r
2 + u2/r

4 + · · · ) = 1.

Mapping s1 7→ 1, s2 7→ 1, . . . , sr 7→ 1 takes Hk to hk and takes U to r2, so
hk = hk−1r

2 − ck; i.e., hk/r
2k = hk−1/r

2k−2 − ck/r
2k. By induction hk/r

2k =
1− c1/r2 − c2/r4 − · · · − ck/r2k. Hence

lim
k→∞

hk/r
2k = 1− c1/r2 − c2/r4 − · · · = 1/(1 + u1/r

2 + u2/r
4 + · · · ).

The desired limk→∞ 1/
√
hk/r2k is thus the square root of the sum

∑
k uk/r

2k

computed above. In particular, limk→∞ 1/
√
hk/r2k ≈ 1.129162 for r = 6.

Department of Computer Science, University of Illinois at Chicago, Chicago, IL

60607–7053, USA
E-mail address: djb@cr.yp.to

Department of Mathematics and Computer Science, Technische Universiteit Eind-

hoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
E-mail address: tanja@hyperelliptic.org


